

Aboleth

[image: circleCI]
 [https://circleci.com/gh/data61/aboleth/tree/develop][image: Documentation Status]
 [http://aboleth.readthedocs.io/en/stable/?badge=stable]A bare-bones TensorFlow [https://www.tensorflow.org/] framework for
Bayesian deep learning and Gaussian process approximation [1] with
stochastic gradient variational Bayes inference [2].

Features

Some of the features of Aboleth:

	Bayesian fully-connected, embedding and convolutional layers using SGVB [2]
for inference.

	Random Fourier and arc-cosine features for approximate Gaussian processes.
Optional variational optimisation of these feature weights as per [1].

	Imputation layers with parameters that are learned as part of a model.

	Very flexible construction of networks, e.g. multiple inputs, ResNets etc.

	Optional maximum-likelihood type II inference for model parameters such as
weight priors/regularizers and regression observation noise.

Why?

The purpose of Aboleth is to provide a set of high performance and light weight
components for building Bayesian neural nets and approximate (deep) Gaussian
process computational graphs. We aim for minimal abstraction over pure
TensorFlow, so you can still assign parts of the computational graph to
different hardware, use your own data feeds/queues, and manage your own
sessions etc.

Here is an example of building a simple Bayesian neural net classifier with one
hidden layer and Normal prior/posterior distributions on the network weights:

import tensorflow as tf
import aboleth as ab

Define the network, ">>" implements function composition,
the InputLayer gives a kwarg for this network, and
allows us to specify the number of samples for stochastic
gradient variational Bayes.
layers = (
 ab.InputLayer(name="X", n_samples=5) >>
 ab.DenseVariational(output_dim=100) >>
 ab.Activation(tf.nn.relu) >>
 ab.DenseVariational(output_dim=1) >>
)

X_ = tf.placeholder(tf.float, shape=(None, D))
Y_ = tf.placeholder(tf.float, shape=(None, 1))

Build the network, nn, and the parameter regularization, kl
nn, kl = net(X=X_)

Define the likelihood model
likelihood = tf.distributions.Bernoulli(logits=nn)

Build the final loss function to use with TensorFlow train
loss = ab.elbo(likelihood, Y_, N, kl)

Now your TensorFlow training code here!
...

At the moment the focus of Aboleth is on supervised tasks, however this is
subject to change in subsequent releases if there is interest in this
capability.

Installation

To get up and running quickly you can use pip and get the Aboleth package from
PyPI [https://pypi.python.org/pypi]:

$ pip install aboleth

For the best performance on your architecture, we recommend installing
TensorFlow from sources [https://www.tensorflow.org/install/install_sources].

Or, to install additional dependencies required by the demos [https://github.com/data61/aboleth/tree/develop/demos]:

$ pip install aboleth[demos]

To install in develop mode with packages required for development we recommend
you clone the repository from GitHub:

$ git clone git@github.com:data61/aboleth.git

Then in the directory that you cloned into, issue the following:

$ pip install -e .[dev]

Getting Started

See the quick start guide [http://aboleth.readthedocs.io/en/latest/quickstart.html] to get started.
Also see the demos [https://github.com/data61/aboleth/tree/develop/demos] folder for more
examples of creating and training algorithms with Aboleth.

The full project documentation can be found on readthedocs [http://aboleth.readthedocs.io].

References

	[1]	(1, 2) Cutajar, K. Bonilla, E. Michiardi, P. Filippone, M. Random Feature
Expansions for Deep Gaussian Processes. In ICML, 2017.

	[2]	(1, 2) Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR,
2014.

License

Copyright 2017 CSIRO (Data61)

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Documentation Contents

	Installation

	Quick Start Guide
	Logistic Classification

	Bayesian Logistic Classification

	Approximate Gaussian Processes

	See Also

	References

	Demos
	Regression

	SARCOS

	Multiple Input Data

	Bayesian Classification with Dropout

	Imputation Layers

	Authors
	Development Leads

	Contributors

	Contributing Guidelines
	Pull Requests

	Code and Documentation Style

	Testing

	API
	ab.losses

	ab.baselayers

	ab.layers

	ab.hlayers

	ab.kernels

	ab.distributions

	ab.impute

	ab.random

	ab.util

	ab.datasets

Feedback

If you have any suggestions or questions about Aboleth feel free to email
us at lachlan.mccalman@data61.csiro.au or daniel.steinberg@data61.csiro.au.

If you encounter any errors or problems with Aboleth, please let us know!
Open an Issue at the GitHub http://github.com/determinant-io/aboleth main
repository.

Installation

Firstly, make sure you have TensorFlow [https://www.tensorflow.org/]
installed, preferably compiled specifically for your architecture, see
installing TensorFlow from sources [https://www.tensorflow.org/install/install_sources].

To get up and running quickly you can use pip and get the Aboleth package from
PyPI [https://pypi.python.org/pypi]:

$ pip install aboleth

Or, to install additional dependencies required by the demos [https://github.com/data61/aboleth/tree/develop/demos]:

$ pip install aboleth[demos]

To install in develop mode with packages required for development we recommend
you clone the repository from GitHub:

$ git clone git@github.com:data61/aboleth.git

Then in the directory that you cloned into, issue the following:

$ pip install -e .[dev]

Or:

$ pip install -e .[dev,demos]

If you also want to develop with the demos.

Quick Start Guide

In Aboleth we use function composition to compose machine learning models.
These models are callable python classes that when called return a TensorFlow
computational graph (really a tf.Tensor). We can best demonstrate this with
a few examples.

Logistic Classification

For our first example, lets make a simple logistic classifier with \(L_2\)
regularisation on the model weights:

import tensorflow as tf
import aboleth as ab

layers = (
 ab.InputLayer(name="X") >>
 ab.DenseMap(output_dim=1, l1_reg=0, l2_reg=.05) >>
 ab.Activation(tf.nn.sigmoid)
)

Here the right shift operator, >>, implements functions composition (or
specifically, a writer monad) from the innermost function to the outermost.
The above code block has has implemented the following function,

\[p(\mathbf{y} = 1 | \mathbf{X}) = \sigma(\mathbf{X}\mathbf{w}),\]

where \(\mathbf{w} \in \mathbb{R}^D\) are the model weights,
\(\mathbf{y} \in \mathbb{N}^N_2\) are the binary labels, \(\mathbf{X}
\in \mathbb{R}^{N \times D}\) are the predictive inputs and
\(\sigma(\cdot)\) is a logistic sigmoid function. At this stage layers
is a callable class (ab.baselayers.MultiLayerComposite), and no
computational graph has been built. ab.InputLayer allows us to name our
inputs so we can refer to them later when we call our class layers. This is
useful when we have multiple inputs into our model, for examples, if we want to
deal with continuous and categorical features separately (see Multiple Input Data).

So now we have defined the structure of the predictive model, if we wish we can
create its computational graph,

net, reg = layers(X=X_)

where the keyword argument X was defined in the InputLayer and X_
is a placeholder (tf.placeholder) or the actual predictive data we want to
build into our model. net is the resulting computational graph of our
predictive model/network, and reg are the regularisation terms associated
with the model parameters (layer weights in this case).

If we wanted, we could evaluate net right now in a TensorFlow session,
however none of the weights have been fit to the data. In order to fit the
weights, we need to define a loss function. For this we need to define a
likelihood model for our classifier, here we choose a Bernoulli distribution
for our binary classifier (which corresponds to a log-loss):

likelihood = tf.distributions.Bernoulli(probs=net)

If we were to call likelihood.log_prob(Y), it would return a tensor that
implements the log of a Bernoulli probability mass function,

\[\mathcal{L}(y_n, p_n) = y_n \log p_n + (1 - y_n) \log(1 - p_n).\]

which is an integral part of our loss function. Here we have used \(p_n\)
as shorthand for \(p(y_n = 1)\).

Note

We actually find it is more numerically stable to define Bernoulli
likelihoods with logits:

likelihood = tf.distributions.Bernoulli(logits=net)

Where:

layers = (
 ab.InputLayer(name="X") >>
 ab.DenseMap(output_dim=1, l1_reg=0, l2_reg=.05) >>
)
net, reg = layers(X=X_)

The Bernoulli class then computes the sigmoid activation internally.

Now we have enough to build the loss function we will use to optimize the model
weights:

loss = ab.max_posterior(net, Y_, reg, likelihood)

This is a maximum a-posteriori loss function, which can be thought of as a
maximum likelihood objective with a penalty on the magnitude of the weights
from a Gaussian prior (controlled by l2_reg or \(\lambda\)),

\[\min_{\mathbf{w}} - \frac{1}{N} \sum_n \mathcal{L}(y_n,
\sigma(\mathbf{x}_n^\top \mathbf{w})) +
\frac{\lambda}{2}\|\mathbf{w}\|^2_2.\]

Now we have enough to use the tf.train module to learn the weights of our
model:

optimizer = tf.train.AdamOptimizer()
train = optimizer.minimize(loss)

with tf.Session() as sess:
 tf.global_variables_initializer().run()

 for _ in range(1000):
 sess.run(train, feed_dict={X_: X, Y_: Y})

This will run 1000 iterations of stochastic gradient optimization (using the
Adam learning rate algorithm) where the model sees all of the data every
iteration. We can also run this on mini-batches, see ab.batch for a simple
batch generator, or TensorFlow’s train module for a more comprehensive set of
utilities (we recommend looking at
tf.train.MonitoredTrainingSession [https://www.tensorflow.org/api_docs/python/tf/train/MonitoredTrainingSession],
tf.train.limit_epochs [https://www.tensorflow.org/api_docs/python/tf/train/limit_epochs] and
tf.train.shuffle_batch [https://www.tensorflow.org/api_docs/python/tf/train/shuffle_batch]).

Now that we have learned our classifier’s weights, \(\hat{\mathbf{w}}\), we
will probably want to use for predicting class label probabilities on unseen
data \(\mathbf{x}^*\),

\[p(y^* = 1 | \mathbf{X}, \mathbf{x}^*) =
 \sigma(\mathbf{x}^{* \top}\hat{\mathbf{w}}).\]

This can be very easily achieved by just evaluating our model on the unseen
predictive data (still in the TensorFlow session from above):

probs = net.eval(feed_dict={X_: X_query})

Note

If you used logits as per the above note, then the prediction becomes:

probs = likelihood.probs.eval(feed_dict={X_: X_query})

And that is it!

Bayesian Logistic Classification

Aboleth is all about Bayesian inference, so now we’ll demonstrate how to make a
variational inference version of the logistic classifier. Now we explicitly
place a prior distribution on the weights,

\[p(\mathbf{w}) = \mathcal{N}(\mathbf{w} | \mathbf{0}, \psi^2 \mathbf{I}_D).\]

Here \(\psi\) is the prior weight standard deviation (note that this
corresponds to \(\sqrt{\lambda^{-1}}\) in the MAP logistic classifier).
We use the same likelihood model as before,

\[p(y_n | \mathbf{w}, \mathbf{x}_n) = \text{Bernoulli}(y_n |
 \sigma(\mathbf{x}_n^\top \mathbf{w})),\]

and ideally we would like to infer the posterior distribution over these
weights using Bayes’ rule (as opposed to just the MAP value,
\(\hat{\mathbf{w}}\)),

\[p(\mathbf{w} | \mathbf{X}, \mathbf{y}) = \frac{
p(\mathbf{w}) \prod_n p(y_n | \mathbf{w}, \mathbf{x}_n)
}{
\int p(\mathbf{w}) \prod_n p(y_n | \mathbf{w}, \mathbf{x}_n) d\mathbf{w}
}.\]

Unfortunately the integral in the denominator is intractable for this model.
This is where variational inference comes to the rescue by approximating the
posterior with a known form – in this case a Gaussian,

\[\begin{split}p(\mathbf{w} | \mathbf{X}, \mathbf{y}) & \approx q(\mathbf{w}), \\
 &= \mathcal{N}(\mathbf{w} | \boldsymbol{\mu}, \boldsymbol{\Sigma}),\end{split}\]

where \(\boldsymbol{\mu} \in \mathbb{R}^D\) and \(\boldsymbol{\Sigma}
\in \mathbb{R}^{D \times D}\). To make this approximation as close as possible,
variational inference optimizes the Kullback Leibler divergence between this
and true posterior using the evidence lower bound, ELBO, and the
reparameterization trick in [1]:

\[\min_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} \text{KL}\left[
 q(\mathbf{w}) \|
 p(\mathbf{w} | \mathbf{X}, \mathbf{y})
 \right].\]

One question you may ask is why would we want to go to all this bother over the
MAP approach? Specifically, why learn an extra \(\mathcal{O}(D^2)\) number
of parameters over the MAP approach? Well, a few reasons, the first being that
the weights are well regularised in this formulation, for instance we can
actually learn \(\psi\), rather than having to set it (this optimization of
the prior is called empirical Bayes). Secondly, we have a principled way of
incorporating modelling uncertainty over the weights into our predictions,

\[\begin{split}p(y^* = 1 | \mathbf{X}, \mathbf{x}^*) &= \int
 \sigma(\mathbf{x}^{* \top}\mathbf{w})
 q(\mathbf{w}) d\mathbf{w}, \\
 &\approx \frac{1}{S} \sum^S_{s=1}
 \sigma(\mathbf{x}^{* \top}\mathbf{w}^{(s)}),
 \quad \mathbf{w}^{(s)} \sim q(\mathbf{w}).\end{split}\]

This will have the effect of making our predictive probabilities closer to 0.5
when the model is uncertain. The MAP approach has no mechanism to achieve this
since it only learns the mode of the posterior, \(\hat{\mathbf{w}}\), with
no notion of variance.

So how do we implement this with Aboleth? Easy; we change layers to the
following,

import numpy as np
import tensorflow as tf
import aboleth as ab

layers = (
 ab.InputLayer(name="X", n_samples=5) >>
 ab.DenseVariational(output_dim=1, std=1., full=True) >>
 ab.Activation(tf.nn.sigmoid)
)

Note we are using DenseVariational instead of DenseMAP. In the
DenseVariational layer the full parameter tells the layer to use a full
covariance Gaussian, and std is initial value of the weight prior standard
deviation, \(\psi\), which is optimized. Also we’ve set n_samples=5 in
the InputLayer, this lets the subsequent layers know that we are making a
stochastic model, that is, whenever we call layers we are actually
expecting back 5 samples of the model output. This makes the
DenseVariational layer multiply its input with 5 samples of the weights
from the approximate posterior, \(\mathbf{X}\mathbf{w}^{(s)}\), where
\(\mathbf{w}^{(s)} \sim q(\mathbf{w}),~\text{for}~s = \{1 \ldots 5\}\).
These 5 samples are then passed to the Activation layer.

Then like before to complete the model specification:

net, kl = layers(X=X_)
likelihood = tf.distributions.Bernoulli(probs=net)
loss = ab.elbo(likelihood, Y_, N=10000, KL=kl)

The main differences here are that reg is now kl, and we use the
elbo loss function. For all intents and purposes kl is still a
regularizer on the weights (it is the Kullback Leibler divergence between the
posterior and the prior distributions on the weights), and elbo is the
evidence lower bound objective. Here N is the (expected) size of the
dataset, we need to know this term in order to properly calculate the evidence
lower bound when using mini-batches of data.

We train this model in exactly the same way as the logistic classifier, however
prediction is slightly different - that is, probs,

probs = net.eval(feed_dict={X_: X_query})

now has a shape of \((5, N^*, 1)\) where we have 5 samples of \(N^*\)
predictions; before we had \((N^*, 1)\). You can simply take the mean of
these samples for the predicted class probability,

expected_p = np.mean(probs, axis=0)

or, you can generate more samples to get a more accurate expected
probabilities (again with the TensorFlow session, sess),

probabilities = ab.predict_samples(net, feed_dict={X_: X_query},
 n_groups=10, session=sess)

This effectively calls net 10 times (n_groups) and concatenates the
results into 50 samples (n_groups * n_samples), then we can take the mean
of these samples exactly as before.

Approximate Gaussian Processes

Aboleth also provides the building blocks to easily create scalable
(approximate) Gaussian processes. We’ll implement a simple Gaussian process
regressor here, but for brevity, we’ll skip the introduction to Gaussian
processes, and refer the interested reader to [2].

The approximation we have implemented in Aboleth is the random feature
expansions (see [3] and [4]), where we can approximate a kernel function
from a set of random basis functions,

\[\text{k}(\mathbf{x}_i, \mathbf{x}_j) \approx \frac{1}{S}
 \sum^S_{s=1} \phi^{(s)}(\mathbf{x}_i)^\top \phi^{(s)}(\mathbf{x}_j),\]

with equality in the infinite limit. The trick is to find the right family of
basis functions, \(\phi\), that corresponds to a particular family of
kernel functions, e.g. radial basis, Matern, etc. This insight allows us to
approximate a Gaussian process regressor with a Bayesian linear regressor
using these random basis functions, \(\phi^{(s)}(\mathbf{X})\)!

We can easily do this using Aboleth, for example, with a radial basis kernel,

import tensorflow as tf
import aboleth as ab

lenscale = tf.Variable(1.) # learn isotropic length scale
kern = ab.RBF(lenscale=ab.pos(lenscale))

layers = (
 ab.InputLayer(name="X", n_samples=5) >>
 ab.RandomFourier(n_features=100, kernel=kern) >>
 ab.DenseVariational(output_dim=1, full=True)
)

Here we have made lenscale a TensorFlow variable so it will be optimized,
and we have also used the ab.pos function to make sure it stays positive.
The ab.RandomFourier class implements random Fourier features [3], that
can model shift invariant kernel functions like radial basis, Matern, etc. See
ab.kernels for implemented kernels. We have also implemented random
arc-cosine kernels [4] see ab.RandomArcCosine in ab.layers.

Then to complete the formulation of the Gaussian process (likelihood and loss),

std = tf.Variable(1.) # learn likelihood std. deviation

net, kl = layers(X=X_)
likelihood = tf.distributions.Normal(net, scale=ab.pos(std))
loss = ab.elbo(likelihood, Y_, kl, N=10000)

Here we just have a Normal likelihood since we are creating a model for
regression, and we can also get TensorFlow to optimise the likelihood standard
deviation, std.

Training and prediction work in exactly the same way as the Bayesian logistic
classifier. Here is an example of the approximate GP in action (see
Regression for a more detailed demonstration);

[image: _images/GP_approx.png]
Example of an approximate Gaussian process with a radial basis kernel. We
have shown 50 samples of the predicted latent functions, the mean of these
draws, and the heatmap is the probability of observing a target under the
predictive distribution, \(p(y^*|\mathbf{X}, \mathbf{y},
\mathbf{x}^*)\).

See Also

For more detailed demonstrations of the functionality within Aboleth, we
recommend you check out the demos,

	Regression and SARCOS - for more regression applications.

	Multiple Input Data - models with multiple input data types.

	Bayesian Classification with Dropout - Bayesian nets using dropout.

	Imputation Layers - let Aboleth deal with missing data for you.

References

	[1]	Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR,
2014.

	[2]	Rasmussen, C. E., and Williams, C. K. I. Gaussian processes for machine
learning. Cambridge: MIT press, 2006.

	[3]	(1, 2) Rahimi, A., & Recht, B. Random features for large-scale kernel machines.
Advances in neural information processing systems. 2007.

	[4]	(1, 2) Cutajar, K. Bonilla, E. Michiardi, P. Filippone, M. Random Feature
Expansions for Deep Gaussian Processes. In ICML, 2017.

Demos

We have included some demonstration scripts with Aboleth to help you get
familiar with some of the possible model architectures that can be build with
Aboleth. We also demonstrate in these scripts a few methods for actually
training models using TensorFlow, and how to get up and running with
TensorBoard, etc.

Regression

This is a simple demo that draws a random, non linear function from a Gaussian
process with a specified kernel and length scale. We then use Aboleth (in
Gaussian process approximation mode) to try to learn this function given only a
few noisy observations of it. This script also demonstrates how we can divide
the data into mini-batches using utilities in the tf.contrib.data [https://www.tensorflow.org/programmers_guide/datasets] module, and how we
can use tf.train.MonitoredTrainingSession [https://www.tensorflow.org/api_docs/python/tf/train/MonitoredTrainingSession]
to log the learning progress.

This demo can be used to generate figures like the following:

[image: _images/GP_approx.png]

You can find the full script here: regression.py [https://github.com/data61/aboleth/blob/develop/demos/regression.py].

SARCOS

Here we use Aboleth, again in Gaussian process regression mode, to fit the
venerable SARCOS [http://www.gaussianprocess.org/gpml/data/] robot arm
inverse kinematics dataset. The aim is to learn the inverse kinematics from
44484 observations of joint positions, velocities and accelerations to joint
torques.

This problem is too large for a regular Gaussian process, and so is a good
demonstration of why the approximation in Aboleth is useful (see Approximate Gaussian Processes). It
also demonstrates how we learn automatic relevance determination (ARD, or
anisotropic) kernels.

We have also demonstrated how you can use TensorBoard [https://www.tensorflow.org/get_started/summaries_and_tensorboard] with the
models you construct in Aboleth, so you can visually monitor the progress of
learning. This also allows us to visualise the model’s performance on the
validation set every training epoch. Using TensorBoard has the nice
side-effect of also enabling model check point saving, so you can actually
resume learning this model if you run the script again!!

[image: _images/tensorboard_sarcos.png]
Using TensorBoard to visualise the learning progress of the Aboleth model
fitting the SARCOS dataset. The “r-square” plot here is made from
evaluating the R-square performance on the held-out test set every epoch of
training.

This demo will make a sarcos folder in the directory you run the demo from.
This contains all of the model checkpoints, and to visualise these with
TensorBoard, run the following:

$ tensorboard --logdir=./sarcos

The full script is here: sarcos.py [https://github.com/data61/aboleth/blob/develop/demos/sarcos.py].

Multiple Input Data

This demo takes inspiration from TensorFlow’s Wide & Deep [https://www.tensorflow.org/tutorials/wide_and_deep] tutorial in that it
treats continuous data separately from categorical data, though we combine both
input types into a “deep” network. It also uses the census dataset from the
TensorFlow tutorial.

We demonstrate a few things in this script:

	How to use Aboleth to learn embeddings of categorical data using the
ab.EmbedVariational layer (see ab.layers).

	How to easily apply these embeddings over multiple columns using the
ab.PerFeature higher-order layer (see ab.hlayers).

	Concatenating these input layers (using ab.Concat) before feeding them
into subsequent layers to learn joint representations.

	How to loop over mini-batches directly using a feed_dict and an
appropriate mini-batch generator, ab.batch (see ab.util).

Using this set up we get an accuracy of about 85.3%, compared to the wide and
deep model that achieves 84.4%.

The full script is here: multi_input.py [https://github.com/data61/aboleth/blob/develop/demos/multi_input.py].

Bayesian Classification with Dropout

Here we demonstrate a slightly different take on Bayesian deep learning. Yarin
Gal in his thesis [http://mlg.eng.cam.ac.uk/yarin/blog_2248.html] and
associate publications demonstrates that we can view regular neural networks
with dropout as a form of variational inference with specific prior and
posterior distributions on the weights.

In this demo we implement this elegant idea with maximum a-posteriori weight
and dropout layers in a classifier (see ab.layers). We leave these layers
as stochastic in the prediction step, and draw samples from the network’s
predictive distribution, as we would in variational networks.

We test the classifier against a random forest classifier on the breast cancer
dataset [http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28diagnostic%29]
with 5-fold cross validation, and get quite good and robust performance.

The script can be found here: classification.py [https://github.com/data61/aboleth/blob/develop/demos/classification.py]

Imputation Layers

Aboleth has a few layers that we can use to impute data and also to learn
imputation statistics, see ab.impute. This drastically simplifies the
pipeline for dealing with messy data, and means our imputation methods can
benefit from information contained in the labels (as opposed to imputing as a
separate stage from supervised learning).

This script demonstrates an imputation layer that learns a “mean” and a
“standard deviation” of a Normal distribution (per column) to randomly impute
the data from! We compare it to just imputing the missing values with the
column means.

The task is a multi-task classification problem in which we have to predict
forest coverage types from 54 features or various types, described here [http://archive.ics.uci.edu/ml/datasets/Covertype]. We have randomly removed
elements from the features, which we impute using the two aforementioned
techniques.

Naive mean imputation gives 68.7% accuracy (0.717 log loss), and the per-column
Normal imputation gives 69.1% accuracy (0.713 log loss).

You can find the script here: imputation.py [https://github.com/data61/aboleth/blob/develop/demos/imputation.py]

Authors

Development Leads

	Daniel Steinberg

	Lachlan McCalman

	Louis Tiao

Contributors

	Simon O’Callaghan

	Alistair Reid

	Joyce Wang

Contributing Guidelines

Please contribute if you think a feature is missing in Aboleth, if you think
an implementation could be better or if you can solve an existing issue!

We just request you read the following before making any changes to the
codebase.

Pull Requests

This is the best way to contribute. We usually follow a git-flow [https://datasift.github.io/gitflow/IntroducingGitFlow.html] based
development cycle. The way this works is quite simple:

	Make an issue on our github with your proposed feature or fix.

	Fork, or make a branch name with the issue number like feature/#113.

	When finished, submit a pull request to merge into develop, and refer to
which issue is being closed in the pull request comment (i.e. closes
#113).

	One of use will review the pull request.

	If accepted, your feature will be merged into develop.

	Your change will eventually be merged into master and tagged with a release
number.

Code and Documentation Style

In Aboleth we are only targeting python 3 - our code is much more elegant as
a result, and we don’t have the resources to also support python 2, sorry.

We adhere to the PEP 8 [https://www.python.org/dev/peps/pep-0008/]
convention for code, and the PEP 257 [https://www.python.org/dev/peps/pep-0257/] convention for docstrings, using
the NumPy/SciPy documentation [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]
style. Our continuous integration automatically runs linting checks, so any
pull-request will automatically fail if these conventions are not followed.

The builtin Sphinx extension Napoleon is used to parse NumPy style docstrings.
To build the documentation you can run make from the docs directory
with the html option:

$ make html

Testing

We use py.test [https://docs.pytest.org/en/latest/] for all of our unit
testing, most of which lives in the tests directory, with judicious use
of doctests – i.e. only when they are illustrative of a functions usage.

All of the dependencies for testing can be installed by issuing:

$ pip install -e .[dev]

You can run the tests by issuing from the top level repository directory:

$ pytest .

Our continuous integration (CI) will fail if coverage drops below 90%, and we
generally want coverage to remain significantly above this. Furthermore, our CI
will fail if the code doesn’t pass PEP 8 and PEP 257 conventions. You can run
the exact CI tests by issuing:

$ make coverage
$ make lint

from the top level repository directory.

API

This is the application programming interface guide for Aboleth.

Aboleth is implemented in pure Python 3 only (we don’t test Python 2, and we
may use Python 3 language specific features). If you would like to contribute
(please do), see the Contributing Guidelines.

	ab.losses

	ab.baselayers

	ab.layers

	ab.hlayers

	ab.kernels

	ab.distributions

	ab.impute

	ab.random

	ab.util

	ab.datasets

ab.losses

Network loss functions.

	
aboleth.losses.elbo(likelihood, Y, N, KL, like_weights=None)

	Build the evidence lower bound loss for a neural net.

	Parameters:	
	likelihood (tf.distributions.Distribution) – the likelihood object that takes neural network(s) as an input. The
batch_shape of this object should be (n_samples, N, ...), where
n_samples is the number of likelihood samples (defined by
ab.InputLayer) and N is the number of observations (can be ? if
you are using a placeholder and mini-batching).

	Y (ndarray, Tensor) – the targets of shape (N, tasks).

	N (int, Tensor) – the total size of the dataset (i.e. number of observations).

	like_weights (callable, ndarray, Tensor) – weights to apply to each observation in the expected log likelihood.
This should be an array of shape (N,) or can be called as
like_weights(Y) and should return a (N,) array.

	Returns:	nelbo – the loss function of the Bayesian neural net (negative ELBO).

	Return type:	Tensor

	
aboleth.losses.max_posterior(likelihood, Y, regulariser, like_weights=None, first_axis_is_obs=True)

	Build maximum a-posteriori (MAP) loss for a neural net.

	Parameters:	
	likelihood (tf.distributions.Distribution) – the likelihood object that takes neural network(s) as an input. The
batch_shape of this object should be (n_samples, N, ...), where
n_samples is the number of likelihood samples (defined by
ab.InputLayer) and N is the number of observations (can be ? if
you are using a placeholder and mini-batching).

	Y (ndarray, Tensor) – the targets of shape (N, tasks).

	like_weights (callable, ndarray, Tensor) – weights to apply to each observation in the expected log likelihood.
This should be an array of shape (N,) or can be called as
like_weights(Y) and should return a (N,) array.

	first_axis_is_obs (bool) – indicates if the first axis indexes the observations/data or not. This
will be True if the likelihood outputs a batch_shape of (N, tasks)
or False if batch_shape is (n_samples, N, tasks).

	Returns:	map – the loss function of the MAP neural net.

	Return type:	Tensor

ab.baselayers

Base Classes for Layers.

	
class aboleth.baselayers.Layer

	Bases: object

Layer base class.

This is an identity layer, and is primarily meant to be subclassed to
construct more intersting layers.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.baselayers.LayerComposite(*layers)

	Bases: aboleth.baselayers.Layer

Composition of Layers.

	Parameters:	*layers – the layers to compose. All must be of type Layer.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.baselayers.MultiLayer

	Bases: object

Base class for layers that take multiple inputs as kwargs.

This is an Abstract class as there is no canonical identity for this
layer (because it must do some kind of reduction).

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.baselayers.MultiLayerComposite(*layers)

	Bases: aboleth.baselayers.MultiLayer

Composition of MultiLayers.

	Parameters:	*layers – the layers to compose. First layer must be of type Multilayer,
subsequent layers must be of type Layer.

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
aboleth.baselayers.stack(l, *layers)

	Stack multiple Layers.

This is a convenience function that acts as an alternative to the
rshift operator implemented for Layers and Multilayers. It is syntatically
more compact for stacking large numbers of layers or lists of layers.

The type of stacking (Layer or Multilayer) is dispatched on the first
argument.

	Parameters:	
	l (Layer or MultiLayer) – The first layer to stack. The type of this layer determines the type
of the output; MultiLayerComposite or LayerComposite.

	*layers – list of additional layers to stack. Must all be of type Layer,
because function composition only works with the first function having
multiple arguments.

	Returns:	result – A single layer that is the composition of the input layers.

	Return type:	MultiLayerComposite or LayerComposite

ab.layers

Network layers and utilities.

	
class aboleth.layers.Activation(h=<function Activation.<lambda>>)

	Bases: aboleth.baselayers.Layer

Activation function layer.

	Parameters:	h (callable) – the element-wise activation function.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.DenseMAP(output_dim, l1_reg=1.0, l2_reg=1.0, use_bias=True)

	Bases: aboleth.layers.SampleLayer

Dense (fully connected) linear layer, with MAP inference.

This implements a linear layer, and when called returns

\[f(\mathbf{X}) = \mathbf{X} \mathbf{W} + \mathbf{b}\]

where \(\mathbf{X} \in \mathbb{R}^{N \times D_{in}}\),
\(\mathbf{W} \in \mathbb{R}^{D_{in} \times D_{out}}\) and
\(\mathbf{b} \in \mathbb{R}^{D_{out}}\). This layer uses maximum
a-posteriori inference to learn the weights and biases, and so also
returns complexity penalities (l1 or l2) for the weights and biases.

	Parameters:	
	output_dim (int) – the dimension of the output of this layer

	l1_reg (float) – the value of the l1 weight regularizer,
\(\text{l1_reg} \times \|\mathbf{W}\|_1\)

	l2_reg (float) – the value of the l2 weight regularizer,
\(\frac{1}{2} \text{l2_reg} \times \|\mathbf{W}\|^2_2\)

	use_bias (bool) – If true, also learn a bias weight, e.g. a constant offset weight.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.DenseVariational(output_dim, std=1.0, full=False, use_bias=True, prior_W=None, prior_b=None, post_W=None, post_b=None)

	Bases: aboleth.layers.SampleLayer3

A dense (fully connected) linear layer, with variational inference.

This implements a dense linear layer,

\[f(\mathbf{X}) = \mathbf{X} \mathbf{W} + \mathbf{b}\]

where prior, \(p(\cdot)\), and approximate posterior, \(q(\cdot)\)
distributions are placed on the weights and also the biases. Here
\(\mathbf{X} \in \mathbb{R}^{N \times D_{in}}\), \(\mathbf{W} \in
\mathbb{R}^{D_{in} \times D_{out}}\) and \(\mathbf{b} \in
\mathbb{R}^{D_{out}}\). By default, the same Normal prior is placed on each
of the layer weights and biases,

\[w_{ij} \sim \mathcal{N}(0, \sigma^2), \quad
b_{j} \sim \mathcal{N}(0, \sigma^2),\]

and a different Normal posterior is learned for each of the layer weights
and biases,

\[w_{ij} \sim \mathcal{N}(m_{ij}, c_{ij}), \quad
b_{j} \sim \mathcal{N}(l_{j}, o_{j}).\]

We also have the option of placing full-covariance Gaussian posteriors on
the input dimension of the weights,

\[\mathbf{w}_{j} \sim \mathcal{N}(\mathbf{m}_{j}, \mathbf{C}_{j}),\]

where \(\mathbf{m}_j \in \mathbb{R}^{D_{in}}\) and
\(\mathbf{C}_j \in \mathbb{R}^{D_{in} \times D_{in}}\).

This layer will use variational inference to learn all of the non-zero
prior and posterior parameters.

Whenever this layer is called, it will return the result,

\[f^{(s)}(\mathbf{X}) = \mathbf{X} \mathbf{W}^{(s)} + \mathbf{b}^{(s)}\]

with samples from the posteriors, \(\mathbf{W}^{(s)} \sim
q(\mathbf{W})\) and \(\mathbf{b}^{(s)} \sim q(\mathbf{b})\). The number
of samples, s, can be controlled by using the n_samples argument in
an InputLayer used to feed the first layer of a model, or by tiling
\(\mathbf{X}\) on the first dimension. This layer also returns the
result of \(\text{KL}[q\|p]\) for all parameters.

	Parameters:	
	output_dim (int) – the dimension of the output of this layer

	std (float) – the initial value of the weight prior standard deviation
(\(\sigma\) above), this is optimized a la maximum likelihood type
II.

	full (bool) – If true, use a full covariance Gaussian posterior for each of the
output weight columns, otherwise use an independent (diagonal) Normal
posterior.

	use_bias (bool) – If true, also learn a bias weight, e.g. a constant offset weight.

	prior_W (tf.distributions.Distribution, optional) – This is the prior distribution object to use on the layer weights. It
must have parameters compatible with (input_dim, output_dim) shaped
weights. This ignores the std parameter.

	prior_b (tf.distributions.Distribution, optional) – This is the prior distribution object to use on the layer intercept. It
must have parameters compatible with (output_dim,) shaped weights.
This ignores the std and use_bias parameters.

	post_W (tf.distributions.Distribution, optional) – It must have parameters compatible with (input_dim, output_dim) shaped
weights. This ignores the full parameter. See also
distributions.gaus_posterior.

	post_b (tf.distributions.Distributions, optional) – This is the posterior distribution object to use on the layer
intercept. It must have parameters compatible with (output_dim,) shaped
weights. This ignores the use_bias parameters. See also
distributions.norm_posterior.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.DropOut(keep_prob)

	Bases: aboleth.baselayers.Layer

Dropout layer, Bernoulli probability of not setting an input to zero.

This is just a thin wrapper around tf.dropout [https://www.tensorflow.org/api_docs/python/tf/nn/dropout]

	Parameters:	keep_prob (float, Tensor) – the probability of keeping an input. See tf.dropout [https://www.tensorflow.org/api_docs/python/tf/nn/dropout].

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.EmbedVariational(output_dim, n_categories, std=1.0, full=False, prior_W=None, post_W=None)

	Bases: aboleth.layers.DenseVariational

Dense (fully connected) embedding layer, with variational inference.

This layer works directly on shape (N, 1) inputs of K category indices
rather than one-hot representations, for efficiency, and is a dense linear
layer,

\[f(\mathbf{X}) = \mathbf{X} \mathbf{W},\]

where prior, \(p(\cdot)\), and approximate posterior, \(q(\cdot)\)
distributions are placed on the weights. Here \(\mathbf{X} \in
\mathbb{N}_2^{N \times K}\) and \(\mathbf{W} \in \mathbb{R}^{K \times
D_{out}}\). Though in code we represent \(\mathbf{X}\) as a vector of
indices in \(\mathbb{N}_K^{N \times 1}\). By default, the same Normal
prior is placed on each of the layer weights,

\[w_{ij} \sim \mathcal{N}(0, \sigma^2),\]

and a different Normal posterior is learned for each of the layer weights,

\[w_{ij} \sim \mathcal{N}(m_{ij}, c_{ij}).\]

We also have the option of placing full-covariance Gaussian posteriors on
the input dimension of the weights,

\[\mathbf{w}_{j} \sim \mathcal{N}(\mathbf{m}_{j}, \mathbf{C}_{j}),\]

where \(\mathbf{m}_j \in \mathbb{R}^{K}\) and
\(\mathbf{C}_j \in \mathbb{R}^{K \times K}\).

This layer will use variational inference to learn all of the non-zero
prior and posterior parameters.

Whenever this layer is called, it will return the result,

\[f^{(s)}(\mathbf{X}) = \mathbf{X} \mathbf{W}^{(s)}\]

with samples from the posterior, \(\mathbf{W}^{(s)} \sim
q(\mathbf{W})\). The number of samples, s, can be controlled by using the
n_samples argument in an InputLayer used to feed the first layer of
a model, or by tiling \(\mathbf{X}\) on the first dimension. This layer
also returns the result of \(\text{KL}[q\|p]\) for all parameters.

	Parameters:	
	output_dim (int) – the dimension of the output (embedding) of this layer

	n_categories (int) – the number of categories in the input variable

	std (float) – the initial value of the weight prior standard deviation
(\(\sigma\) above), this is optimized a la maximum likelihood type
II.

	full (bool) – If true, use a full covariance Gaussian posterior for each of the
output weight columns, otherwise use an independent (diagonal) Normal
posterior.

	prior_W (tf.distributions.Distribution, optional) – This is the prior distribution object to use on the layer weights. It
must have parameters compatible with (input_dim, output_dim) shaped
weights. This ignores the std parameter.

	post_W (tf.distributions.Distribution, optional) – This is the posterior distribution object to use on the layer weights.
It must have parameters compatible with (input_dim, output_dim) shaped
weights. This ignores the full parameter. See also
distributions.gaus_posterior.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.InputLayer(name, n_samples=None)

	Bases: aboleth.baselayers.MultiLayer

Create an input layer.

This layer defines input kwargs so that a user may easily provide the right
inputs to a complex set of layers. It takes a 2D tensor of shape (N, D).
If n_samples is specified, the input is tiled along a new first axis
creating a (n_samples, N, D) tensor for propogating samples through a
variational deep net.

	Parameters:	
	name (string) – The name of the input. Used as the agument for input into the net.

	n_samples (int > 0) – The number of samples.

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.MaxPool2D(pool_size, strides, padding='SAME')

	Bases: aboleth.baselayers.Layer

Max pooling layer for 2D inputs (e.g. images).

This is just a thin wrapper around tf.nn.max_pool [https://www.tensorflow.org/api_docs/python/tf/nn/max_pool]

	Parameters:	
	pool_size (tuple or list of 2 ints) – width and height of the pooling window.

	strides (tuple or list of 2 ints) – the strides of the pooling operation along the height and width.

	padding (str) – One of ‘SAME’ or ‘VALID’. Defaults to ‘SAME’. The type of padding

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.RandomArcCosine(n_features, lenscale=1.0, p=1, variational=False, lenscale_posterior=None)

	Bases: aboleth.layers.RandomFourier

Random arc-cosine kernel layer.

	NOTE: This should be followed by a dense layer to properly implement a

	kernel approximation.

	Parameters:	
	n_features (int) – the number of unique random features, the actual output dimension of
this layer will be 2 * n_features.

	lenscale (float, ndarray, Tensor) – the lenght scales of the ar-cosine kernel, this can be a scalar for
an isotropic kernel, or a vector for an automatic relevance detection
(ARD) kernel.

	p (int) – The order of the arc-cosine kernel, this must be an integer greater
than, or eual to zero. 0 will lead to sigmoid-like kernels, 1 will lead
to relu-like kernels, 2 quadratic-relu kernels etc.

	variational (bool) – use variational features instead of random features, (i.e. VAR-FIXED in
[2]).

	lenscale_posterior (float, ndarray, optional) – the initial value for the posterior length scale. This is only used
if variational==True. This can be a scalar or vector (different
initial value per input dimension). If this is left as None, it will be
set to sqrt(1 / input_dim) (this is similar to the ‘auto’ setting
for a scikit learn SVM with a RBF kernel).

See also

	[1] Cho, Youngmin, and Lawrence K. Saul.

	“Analysis and extension of arc-cosine kernels for large margin
classification.” arXiv preprint arXiv:1112.3712 (2011).

	[2] Cutajar, K. Bonilla, E. Michiardi, P. Filippone, M.

	Random Feature Expansions for Deep Gaussian Processes. In ICML, 2017.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.RandomFourier(n_features, kernel)

	Bases: aboleth.layers.SampleLayer3

Random Fourier feature (RFF) kernel approximation layer.

	NOTE: This should be followed by a dense layer to properly implement a

	kernel approximation.

	Parameters:	
	n_features (int) – the number of unique random features, the actual output dimension of
this layer will be 2 * n_features.

	kernel (kernels.ShiftInvariant) – the kernel object that yeilds the random samples from the fourier
spectrum of a particular kernel to approximate. See the ab.kernels
module.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.Reshape(target_shape)

	Bases: aboleth.baselayers.Layer

Reshape layer.

Reshape and output an tensor to a specified shape.

	Parameters:	targe_shape (tuple of ints) – Does not include the samples or batch axes.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.SampleLayer

	Bases: aboleth.baselayers.Layer

Sample Layer base class.

This is the base class for layers that build upon stochastic (variational)
nets. These expect rank >= 3 input Tensors, where the first dimension
indexes the random samples of the stochastic net.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.layers.SampleLayer3

	Bases: aboleth.layers.SampleLayer

Special case of SampleLayer restricted to rank == 3 input Tensors.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

ab.hlayers

Higher-order neural network layers (made from other layers).

	
class aboleth.hlayers.Concat(*layers)

	Bases: aboleth.baselayers.MultiLayer

Concatenates the output of multiple layers.

	Parameters:	layers ([MultiLayer]) – The layers to concatenate.

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.hlayers.PerFeature(*layers)

	Bases: aboleth.baselayers.Layer

Concatenate multiple layers with sliced inputs.

Each layer will recieve a slice along the last axis of the input to the new
function. In other words, PerFeature(l1, l2)(X)
will call l1(X[..., 0]) and l2(X[..., 1]) then concatenate their
outputs into a single tensor. This is mostly useful for simplifying
embedding multiple categorical inputs that are stored columnwise
in the same 2D tensor.

This function assumes the tensor being provided is 3D.

	Parameters:	layers ([Layer]) – The layers to concatenate.

	
__call__(X)

	Construct the subgraph for this layer.

	Parameters:	X (Tensor) – the input to this layer

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.hlayers.Sum(*layers)

	Bases: aboleth.baselayers.MultiLayer

Sums multiple layers by adding their outputs.

	Parameters:	layers ([MultiLayer]) – The layers to add.

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

ab.kernels

Random kernel classes for use with the RandomKernel layers.

	
class aboleth.kernels.Matern(lenscale=1.0, p=1)

	Bases: aboleth.kernels.ShiftInvariant

Matern kernel approximation.

	Parameters:	
	lenscale (float, ndarray, Tensor, Variable) – the length scales of the shift invariant kernel, this can be a scalar
for an isotropic kernel, or a vector of shape (input_dim, 1) for an
automatic relevance detection (ARD) kernel. If you wish to learn this
parameter, make it a Variable (or ab.pos(tf.Variable(...)) to keep
it positively constrained).

	p (int) – a zero or positive integer specifying the number of the Matern kernel,
e.g. p == 0 results int a Matern 1/2 kernel, p == 1 results in
the Matern 3/2 kernel etc.

	
weights(input_dim, n_features)

	Generate the random fourier weights for this kernel.

	Parameters:	
	input_dim (int) – the input dimension to this layer.

	n_features (int) – the number of unique random features, the actual output dimension
of this layer will be 2 * n_features.

	Returns:	
	P (ndarray) – the random weights of the fourier features of shape
(input_dim, n_features).

	KL (Tensor, float) – the KL penalty associated with the parameters in this kernel (0.0).

	
class aboleth.kernels.RBF(lenscale=1.0)

	Bases: aboleth.kernels.ShiftInvariant

Radial basis kernel approximation.

	Parameters:	lenscale (float, ndarray, Tensor, Variable) – the length scales of the shift invariant kernel, this can be a scalar
for an isotropic kernel, or a vector of shape (input_dim, 1) for an
automatic relevance detection (ARD) kernel. If you wish to learn this
parameter, make it a Variable (or ab.pos(tf.Variable(...)) to keep
it positively constrained).

	
weights(input_dim, n_features)

	Generate the random fourier weights for this kernel.

	Parameters:	
	input_dim (int) – the input dimension to this layer.

	n_features (int) – the number of unique random features, the actual output dimension
of this layer will be 2 * n_features.

	Returns:	
	P (ndarray) – the random weights of the fourier features of shape
(input_dim, n_features).

	KL (Tensor, float) – the KL penalty associated with the parameters in this kernel (0.0).

	
class aboleth.kernels.RBFVariational(lenscale=1.0, lenscale_posterior=None)

	Bases: aboleth.kernels.ShiftInvariant

Variational Radial basis kernel approximation.

This kernel is similar to the RBF kernel, however we learn an independant
Gaussian posterior distribution over the kernel weights to sample from.

	Parameters:	
	lenscale (float, ndarray, Tensor, Variable) – the length scales of the shift invariant kernel, this can be a scalar
for an isotropic kernel, or a vector of shape (input_dim, 1) for an
automatic relevance detection (ARD) kernel. If you wish to learn this
parameter, make it a Variable (or ab.pos(tf.Variable(...)) to keep
it positively constrained).

	lenscale_posterior (float, ndarray, optional) – the initial value for the posterior length scale, this can be a
scalar or vector (different initial value per input dimension). If this
is left as None, it will be set to sqrt(1 / input_dim) (this is
similar to the ‘auto’ setting for a scikit learn SVM with a RBF
kernel).

	
weights(input_dim, n_features)

	Generate the random fourier weights for this kernel.

	Parameters:	
	input_dim (int) – the input dimension to this layer.

	n_features (int) – the number of unique random features, the actual output dimension
of this layer will be 2 * n_features.

	Returns:	
	P (ndarray) – the random weights of the fourier features of shape
(input_dim, n_features).

	KL (Tensor, float) – the KL penalty associated with the parameters in this kernel.

	
class aboleth.kernels.ShiftInvariant(lenscale=1.0)

	Bases: object

Abstract base class for shift invariant kernel approximations.

	Parameters:	lenscale (float, ndarray, Tensor, Variable) – the length scales of the shift invariant kernel, this can be a scalar
for an isotropic kernel, or a vector of shape (input_dim, 1) for an
automatic relevance detection (ARD) kernel. If you wish to learn this
parameter, make it a Variable (or ab.pos(tf.Variable(...)) to keep
it positively constrained).

	
weights(input_dim, n_features)

	Generate the random fourier weights for this kernel.

	Parameters:	
	input_dim (int) – the input dimension to this layer.

	n_features (int) – the number of unique random features, the actual output dimension
of this layer will be 2 * n_features.

	Returns:	
	P (ndarray) – the random weights of the fourier features of shape
(input_dim, n_features).

	KL (Tensor, float) – the KL penalty associated with the parameters in this kernel.

ab.distributions

Helper functions for model parameter distributions.

	
aboleth.distributions.gaus_posterior(dim, std0)

	Initialise a posterior Gaussian distribution with a diagonal covariance.

Even though this is initialised with a diagonal covariance, a full
covariance will be learned, using a lower triangular Cholesky
parameterisation.

	Parameters:	
	dim (tuple or list) – the dimension of this distribution.

	std0 (float) – the initial (unoptimized) diagonal standard deviation of this
distribution.

	Returns:	Q – the initialised posterior Gaussian object.

	Return type:	tf.contrib.distributions.MultivariateNormalTriL

Note

This will make tf.Variables on the randomly initialised mean and covariance
of the posterior. The initialisation of the mean is from a Normal with zero
mean, and std0 standard deviation, and the initialisation of the (lower
triangular of the) covariance is from a gamma distribution with an alpha of
std0 and a beta of 1.

	
aboleth.distributions.kl_sum(q, p)

	Compute the total KL between (potentially) many distributions.

I.e. \(\sum_i \text{KL}[q_i || p_i]\)

	Parameters:	
	q (tf.distributions.Distribution) – A tensorflow Distribution object

	p (tf.distributions.Distribution) – A tensorflow Distribution object

	Returns:	kl – the result of the sum of the KL divergences of the q and p
distibutions.

	Return type:	Tensor

	
aboleth.distributions.norm_posterior(dim, std0)

	Initialise a posterior (diagonal) Normal distribution.

	Parameters:	
	dim (tuple or list) – the dimension of this distribution.

	std0 (float) – the initial (unoptimized) standard deviation of this distribution.

	Returns:	Q – the initialised posterior Normal object.

	Return type:	tf.distributions.Normal

Note

This will make tf.Variables on the randomly initialised mean and standard
deviation of the posterior. The initialisation of the mean is from a Normal
with zero mean, and std0 standard deviation, and the initialisation of
the standard deviation is from a gamma distribution with an alpha of
std0 and a beta of 1.

	
aboleth.distributions.norm_prior(dim, std)

	Initialise a prior (zero mean, isotropic) Normal distribution.

	Parameters:	
	dim (tuple or list) – the dimension of this distribution.

	std (float) – the prior standard deviation of this distribution.

	Returns:	P – the initialised prior Normal object.

	Return type:	tf.distributions.Normal

Note

This will make a tf.Variable on the variance of the prior that is
initialised with std.

ab.impute

Layers that impute missing data.

	
class aboleth.impute.FixedNormalImpute(datalayer, masklayer, mu_array, std_array)

	Bases: aboleth.impute.ImputeOp

Impute the missing values using marginal Gaussians over each column.

Takes two layers, one the returns a data tensor and the other returns a
mask layer. Creates a layer that returns a tensor in which the masked
values have been imputed as random draws from the marginal Gaussians.

	Parameters:	
	datalayer (callable) – A layer that returns a data tensor. Must be of form f(**kwargs).

	masklayer (callable) – A layer that returns a boolean mask tensor where True values are
masked. Must be of form f(**kwargs).

	mu_array (array-like) – A list of the global mean values of each dat column

	std_array (array-like) – A list of the global standard deviation of each data column

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.impute.ImputeOp(datalayer, masklayer)

	Bases: aboleth.baselayers.MultiLayer

Abstract Base Impute operation. These specialise MultiLayers.

They expect a data InputLayer and a mask InputLayer. They return layers in
which the masked values have been imputed.

	Parameters:	
	datalayer (callable) – A layer that returns a data tensor. Must be of form f(**kwargs).

	masklayer (callable) – A layer that returns a boolean mask tensor where True values are
masked. Must be of form f(**kwargs).

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.impute.LearnedNormalImpute(datalayer, masklayer)

	Bases: aboleth.impute.ImputeOp

Impute the missing values with draws from learned normal distributions.

Takes two layers, one the returns a data tensor and the other returns a
mask layer. This creates a layer that will learn marginal Gaussian
parameters per column, and infill missing values using draws from these
Gaussians.

	Parameters:	
	datalayer (callable) – A layer that returns a data tensor. Must be an InputLayer.

	masklayer (callable) – A layer that returns a boolean mask tensor where True values are
masked. Must be an InputLayer.

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.impute.LearnedScalarImpute(datalayer, masklayer)

	Bases: aboleth.impute.ImputeOp

Impute the missing values using learnt scalar for each column.

Takes two layers, one the returns a data tensor and the other returns a
mask layer. Creates a layer that returns a tensor in which the masked
values have been imputed with a learned scalar value per colum.

	Parameters:	
	datalayer (callable) – A layer that returns a data tensor. Must be an InputLayer.

	masklayer (callable) – A layer that returns a boolean mask tensor where True values are
masked. Must be an InputLayer.

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

	
class aboleth.impute.MeanImpute(datalayer, masklayer)

	Bases: aboleth.impute.ImputeOp

Impute the missing values using the stochastic mean of their column.

Takes two layers, one the returns a data tensor and the other returns a
mask layer. Returns a layer that returns a tensor in which the masked
values have been imputed as the column means calculated from the batch.

	Parameters:	
	datalayer (callable) – A layer that returns a data tensor. Must be of form f(**kwargs).

	masklayer (callable) – A layer that returns a boolean mask tensor where True values are
masked. Must be of form f(**kwargs).

	
__call__(**kwargs)

	Construct the subgraph for this layer.

	Parameters:	**kwargs – the inputs to this layer (Tensors)

	Returns:	
	Net (Tensor) – the output of this layer

	KL (float, Tensor) – the regularizer/Kullback Leibler ‘cost’ of the parameters in this
layer.

ab.random

Random generators and state.

	
class aboleth.random.SeedGenerator

	Bases: object

Make new random seeds deterministically from a base random seed.

	
next()

	Generate a random int using this object’s base state.

	Returns:	result – an integer that can be used to seed other random states
deterministically.

	Return type:	int

	
set_hyperseed(hs)

	Set the random seed state in this object.

	Parameters:	hs (None, int, array_like) – seed the random state of this object, see numpy.random.RandomState
for valid inputs.

	
aboleth.random.endless_permutations(N)

	Generate an endless sequence of permutations of the set [0, ..., N).

If we call this N times, we will sweep through the entire set without
replacement, on the (N+1)th call a new permutation will be created, etc.

	Parameters:	N (int) – the length of the set

	Yields:	int – yeilds a random int from the set [0, ..., N)

Examples

>>> perm = endless_permutations(5)
>>> type(perm)
<class 'generator'>
>>> p = next(perm)
>>> p < 5
True
>>> p2 = next(perm)
>>> p2 != p
True

	
aboleth.random.set_hyperseed(hs)

	Set the global hyperseed from which to generate all other seeds.

	Parameters:	hs (None, int, array_like) – seed the random state of the global hyperseed, see
numpy.random.RandomState for valid inputs.

ab.util

Package helper utilities.

	
aboleth.util.batch(feed_dict, batch_size, n_iter=10000, N_=None)

	Create random batches for Stochastic gradients.

Feed dict data generator for SGD that will yeild random batches for a
a defined number of iterations, which can be infinite. This generator makes
consecutive passes through the data, drawing without replacement on each
pass.

	Parameters:	
	feed_dict (dict of ndarrays) – The data with {tf.placeholder: data} entries. This assumes all
items have the same length!

	batch_size (int) – number of data points in each batch.

	n_iter (int, optional) – The number of iterations

	N (tf.placeholder (int), optional) – Place holder for the size of the dataset. This will be fed to an
algorithm.

	Yields:	dict – with each element an array length batch_size, i.e. a subset of
data, and an element for N_. Use this as your feed-dict when
evaluating a loss, training, etc.

	
aboleth.util.batch_prediction(feed_dict, batch_size)

	Split the data in a feed_dict into contiguous batches for prediction.

	Parameters:	
	feed_dict (dict of ndarrays) – The data with {tf.placeholder: data} entries. This assumes all
items have the same length!

	batch_size (int) – number of data points in each batch.

	Yields:	
	ndarray – an array of shape approximately (batch_size,) of indices into the
original data for the current batch

	dict – with each element an array length batch_size, i.e. a subset of
data. Use this as your feed-dict when evaluating a model, prediction,
etc.

Note

The exact size of the batch may not be batch_size, but the nearest size
that splits the size of the data most evenly.

	
aboleth.util.pos(X, minval=1e-15)

	Constrain a tf.Variable to be positive only.

At the moment this is implemented as:

\(\max(|\mathbf{X}|, \text{minval})\)

This is fast and does not result in vanishing gradients, but will lead to
non-smooth gradients and more local minima. In practice we haven’t noticed
this being a problem.

	Parameters:	
	X (Tensor) – any Tensor in which all elements will be made positive.

	minval (float) – the minimum “positive” value the resulting tensor will have.

	Returns:	X – a tensor the same shape as the input X but positively constrained.

	Return type:	Tensor

Examples

>>> X = tf.constant(np.array([1.0, -1.0, 0.0]))
>>> Xp = pos(X)
>>> with tf.Session():
... xp = Xp.eval()
>>> xp
array([1.00000000e+00, 1.00000000e+00, 1.00000000e-15])

	
aboleth.util.predict_expected(predictor, feed_dict=None, n_groups=1, session=None)

	Help to get the expected value from a predictor.

	Parameters:	
	predictor (Tensor) – a tensor that outputs a shape (n_samples, N, tasks) where
n_samples are the random samples from the predictor (e.g. the
output of Net), N is the size of the query dataset, and
tasks the number of prediction tasks.

	feed_dict (dict, optional) – The data with {tf.placeholder: data} entries.

	n_groups (int) – The number of times to evaluate the predictor and concatenate the
samples.

	session (Session) – the session to be used to evaluate the predictor.

	Returns:	pred – expected value of the prediction with shape (N, tasks). n_samples *
n_groups samples go into evaluating this expectation.

	Return type:	ndarray

Note

This has to be called in an active tensorflow session!

	
aboleth.util.predict_samples(predictor, feed_dict=None, n_groups=1, session=None)

	Help to get samples from a predictor.

	Parameters:	
	predictor (Tensor) – a tensor that outputs a shape (n_samples, N, tasks) where
n_samples are the random samples from the predictor (e.g. the
output of Net), N is the size of the query dataset, and
tasks the number of prediction tasks.

	feed_dict (dict, optional) – The data with {tf.placeholder: data} entries.

	n_groups (int) – The number of times to evaluate the predictor and concatenate the
samples.

	session (Session) – the session to be used to evaluate the predictor.

	Returns:	pred – prediction samples of shape (n_samples * n_groups, N, tasks).

	Return type:	ndarray

Note

This has to be called in an active tensorflow session!

ab.datasets

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aboleth	

 	
 	
 aboleth.baselayers	

 	
 	
 aboleth.distributions	

 	
 	
 aboleth.hlayers	

 	
 	
 aboleth.impute	

 	
 	
 aboleth.kernels	

 	
 	
 aboleth.layers	

 	
 	
 aboleth.losses	

 	
 	
 aboleth.random	

 	
 	
 aboleth.util	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | W

_

 	
 	__call__() (aboleth.baselayers.Layer method)

 	(aboleth.baselayers.LayerComposite method)

 	(aboleth.baselayers.MultiLayer method)

 	(aboleth.baselayers.MultiLayerComposite method)

 	(aboleth.hlayers.Concat method)

 	(aboleth.hlayers.PerFeature method)

 	(aboleth.hlayers.Sum method)

 	(aboleth.impute.FixedNormalImpute method)

 	(aboleth.impute.ImputeOp method)

 	(aboleth.impute.LearnedNormalImpute method)

 	(aboleth.impute.LearnedScalarImpute method)

 	(aboleth.impute.MeanImpute method)

 	(aboleth.layers.Activation method)

 	(aboleth.layers.DenseMAP method)

 	(aboleth.layers.DenseVariational method)

 	(aboleth.layers.DropOut method)

 	(aboleth.layers.EmbedVariational method)

 	(aboleth.layers.InputLayer method)

 	(aboleth.layers.MaxPool2D method)

 	(aboleth.layers.RandomArcCosine method)

 	(aboleth.layers.RandomFourier method)

 	(aboleth.layers.Reshape method)

 	(aboleth.layers.SampleLayer method)

 	(aboleth.layers.SampleLayer3 method)

A

 	
 	aboleth.baselayers (module)

 	aboleth.distributions (module)

 	aboleth.hlayers (module)

 	aboleth.impute (module)

 	aboleth.kernels (module)

 	
 	aboleth.layers (module)

 	aboleth.losses (module)

 	aboleth.random (module)

 	aboleth.util (module)

 	Activation (class in aboleth.layers)

B

 	
 	batch() (in module aboleth.util)

 	
 	batch_prediction() (in module aboleth.util)

C

 	
 	Concat (class in aboleth.hlayers)

D

 	
 	DenseMAP (class in aboleth.layers)

 	
 	DenseVariational (class in aboleth.layers)

 	DropOut (class in aboleth.layers)

E

 	
 	elbo() (in module aboleth.losses)

 	
 	EmbedVariational (class in aboleth.layers)

 	endless_permutations() (in module aboleth.random)

F

 	
 	FixedNormalImpute (class in aboleth.impute)

G

 	
 	gaus_posterior() (in module aboleth.distributions)

I

 	
 	ImputeOp (class in aboleth.impute)

 	
 	InputLayer (class in aboleth.layers)

K

 	
 	kl_sum() (in module aboleth.distributions)

L

 	
 	Layer (class in aboleth.baselayers)

 	LayerComposite (class in aboleth.baselayers)

 	
 	LearnedNormalImpute (class in aboleth.impute)

 	LearnedScalarImpute (class in aboleth.impute)

M

 	
 	Matern (class in aboleth.kernels)

 	max_posterior() (in module aboleth.losses)

 	MaxPool2D (class in aboleth.layers)

 	
 	MeanImpute (class in aboleth.impute)

 	MultiLayer (class in aboleth.baselayers)

 	MultiLayerComposite (class in aboleth.baselayers)

N

 	
 	next() (aboleth.random.SeedGenerator method)

 	
 	norm_posterior() (in module aboleth.distributions)

 	norm_prior() (in module aboleth.distributions)

P

 	
 	PerFeature (class in aboleth.hlayers)

 	pos() (in module aboleth.util)

 	
 	predict_expected() (in module aboleth.util)

 	predict_samples() (in module aboleth.util)

R

 	
 	RandomArcCosine (class in aboleth.layers)

 	RandomFourier (class in aboleth.layers)

 	
 	RBF (class in aboleth.kernels)

 	RBFVariational (class in aboleth.kernels)

 	Reshape (class in aboleth.layers)

S

 	
 	SampleLayer (class in aboleth.layers)

 	SampleLayer3 (class in aboleth.layers)

 	SeedGenerator (class in aboleth.random)

 	set_hyperseed() (aboleth.random.SeedGenerator method)

 	(in module aboleth.random)

 	
 	ShiftInvariant (class in aboleth.kernels)

 	stack() (in module aboleth.baselayers)

 	Sum (class in aboleth.hlayers)

W

 	
 	weights() (aboleth.kernels.Matern method)

 	(aboleth.kernels.RBF method)

 	(aboleth.kernels.RBFVariational method)

 	(aboleth.kernels.ShiftInvariant method)

 _static/down-pressed.png

_static/comment.png

_static/plus.png

_images/GP_approx.png
Training
Truth

— samples

— Mean

_images/tensorboard_sarcos.png
TensorBoard SCALARS GRAPHS PROJECTOR INACTIVE

Show data download links Q
Ignore outliers in chart scaling

s 2 3
Tooltip sorting method: default ~ ~ ‘Tags matching 1.+ (all tags)
Deepnet/loss global_step/sec rsquare
Smoothing -
e 580 0950
0 4.000e+5
540 0850
2500845
Horizontal Axis 500 0750
1.000e+5
e RELATIVE WALL
-5.000e+4 o 060
0000 2000k 4000k 60.00k 0.000 2000k 4000k 60.00k 0.000 2000k 4000k 60.00k
Runs o EE o onE

Write a regex to filter runs

0. Deepnet 1

Deepnet/loss

5500+5

4500e+5

3500e+5

2500e+5

1500245

5.000e+4

-5.000e+4

0000 1000k 2000k 3000k 40,00k 5000k 60.00k 7000k
TOGGLE ALL RUNS

/sarcos

nav.xhtml

 Table of Contents

 		Aboleth

 		Installation

 		Quick Start Guide

 		Logistic Classification

 		Bayesian Logistic Classification

 		Approximate Gaussian Processes

 		See Also

 		References

 		Demos

 		Regression

 		SARCOS

 		Multiple Input Data

 		Bayesian Classification with Dropout

 		Imputation Layers

 		Authors

 		Development Leads

 		Contributors

 		Contributing Guidelines

 		Pull Requests

 		Code and Documentation Style

 		Testing

 		API

 		ab.losses

 		ab.baselayers

 		ab.layers

 		ab.hlayers

 		ab.kernels

 		ab.distributions

 		ab.impute

 		ab.random

 		ab.util

 		ab.datasets

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

